Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(5): 052501, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37595245

ABSTRACT

We used the ^{138}Ba(d,α) reaction to carry out an in-depth study of states in ^{136}Cs, up to around 2.5 MeV. In this Letter, we place emphasis on hitherto unobserved states below the first 1^{+} level, which are important in the context of solar neutrino and fermionic dark matter (FDM) detection in large-scale xenon-based experiments. We identify for the first time candidate metastable states in ^{136}Cs, which would allow a real-time detection of solar neutrino and FDM events in xenon detectors, with high background suppression. Our results are also compared with shell-model calculations performed with three Hamiltonians that were previously used to evaluate the nuclear matrix element (NME) for ^{136}Xe neutrinoless double beta decay. We find that one of these Hamiltonians, which also systematically underestimates the NME compared with the others, dramatically fails to describe the observed low-energy ^{136}Cs spectrum, while the other two show reasonably good agreement.

2.
Phys Rev Lett ; 130(12): 122502, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37027859

ABSTRACT

The excited states of N=44 ^{74}Zn were investigated via γ-ray spectroscopy following ^{74}Cu ß decay. By exploiting γ-γ angular correlation analysis, the 2_{2}^{+}, 3_{1}^{+}, 0_{2}^{+}, and 2_{3}^{+} states in ^{74}Zn were firmly established. The γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+}, 3_{1}^{+}, and 2_{3}^{+} states were measured, allowing for the extraction of relative B(E2) values. In particular, the 2_{3}^{+}→0_{2}^{+} and 2_{3}^{+}→4_{1}^{+} transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are discussed in terms of underlying shapes, as well as the role of neutron excitations across the N=40 gap. Enhanced axial shape asymmetry (triaxiality) is suggested to characterize ^{74}Zn in its ground state. Furthermore, an excited K=0 band with a significantly larger softness in its shape is identified. A shore of the N=40 "island of inversion" appears to manifest above Z=26, previously thought as its northern limit in the chart of the nuclides.

3.
Phys Rev Lett ; 127(16): 169201, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34723590

Subject(s)
Brain
6.
Phys Rev Lett ; 124(4): 042503, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058764

ABSTRACT

There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.

7.
Phys Rev Lett ; 123(14): 142502, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702191

ABSTRACT

From detailed spectroscopy of ^{110}Cd and ^{112}Cd following the ß^{+}/electron-capture decay of ^{110,112}In and the ß^{-} decay of ^{112}Ag, very weak decay branches from nonyrast states are observed. The transition rates determined from the measured branching ratios and level lifetimes obtained with the Doppler-shift attenuation method following inelastic neutron scattering reveal collective enhancements that are suggestive of a series of rotational bands. In ^{110}Cd, a γ band built on the shape-coexisting intruder configuration is suggested. For ^{112}Cd, the 2^{+} and 3^{+} intruder γ-band members are suggested, the 0_{3}^{+} band is extended to spin 4^{+}, and the 0_{4}^{+} band is identified. The results are interpreted using beyond-mean-field calculations employing the symmetry conserving configuration mixing method with the Gogny D1S energy density functional and with the suggestion that the Cd isotopes exhibit multiple shape coexistence.

8.
Nat Commun ; 10(1): 2473, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31171788

ABSTRACT

There is a large body of evidence that atomic nuclei can undergo octupole distortion and assume the shape of a pear. This phenomenon is important for measurements of electric-dipole moments of atoms, which would indicate CP violation and hence probe physics beyond the Standard Model of particle physics. Isotopes of both radon and radium have been identified as candidates for such measurements. Here, we observed the low-lying quantum states in 224Rn and 226Rn by accelerating beams of these radioactive nuclei. We show that radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their ground states. We conclude that radon atoms provide less favourable conditions for the enhancement of a measurable atomic electric-dipole moment.

9.
Phys Rev Lett ; 116(17): 172501, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-27176517

ABSTRACT

Precision measurements of superallowed Fermi ß-decay transitions, particularly for the lightest superallowed emitters ^{10}C and ^{14}O, set stringent limits on possible scalar current contributions to the weak interaction. In the present work, a discrepancy between recent measurements of the ^{10}C half-life is addressed through two high-precision half-life measurements, via γ-ray photopeak and ß counting, that yield consistent results for the ^{10}C half-life of T_{1/2}=19.2969±0.0074 s and T_{1/2}=19.3009±0.0017 s, respectively. The latter is the most precise superallowed ß-decay half-life measurement reported to date and the first to achieve a relative precision below 10^{-4}. A fit to the world superallowed ß-decay data including the ^{10}C half-life measurements reported here yields b_{F}=-0.0018±0.0021 (68% C.L.) for the Fierz interference term and C_{S}/C_{V}=+0.0009±0.0011 for the ratio of the weak scalar to vector couplings assuming left-handed neutrinos.

10.
Phys Rev Lett ; 114(19): 192502, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26024166

ABSTRACT

The first conclusive evidence of a dipole resonance in ^{11}Li having isoscalar character observed from inelastic scattering with a novel solid deuteron target is reported. The experiment was performed at the newly commissioned IRIS facility at TRIUMF. The results show a resonance peak at an excitation energy of 1.03±0.03 MeV with a width of 0.51±0.11 MeV (FWHM). The angular distribution is consistent with a dipole excitation in the distorted-wave Born approximation framework. The observed resonance energy together with shell model calculations show the first signature that the monopole tensor interaction is important in ^{11}Li. The first ab initio calculations in the coupled cluster framework are also presented.

11.
Phys Rev Lett ; 110(2): 022504, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23383898

ABSTRACT

Based on results from a measurement of weak decay branches observed following the ß- decay of 94Y and on lifetime data from a study of 94Zr by inelastic neutron scattering, collective structure is deduced in the closed-subshell nucleus 94Zr. These results establish shape coexistence in 94Zr. The role of subshells for nuclear collectivity is suggested to be important.

12.
Phys Rev Lett ; 109(4): 042301, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-23006079

ABSTRACT

We report a precise determination of the (19)Ne half-life to be T(1/2)=17.262±0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

13.
Phys Rev Lett ; 106(3): 032501, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21405268

ABSTRACT

A high-precision half-life measurement for the superallowed ß+ emitter 26Al(m) was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T 1/2 6346.54 ± 0.46(stat) ± 0.60 (syst) ms, consistent with, but 2.5 times more precise than, the previous world average. The 26Al(m) half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed ß decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for (26)Al(m), 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi ß-decay studies used to test the conserved vector current hypothesis and determine the V(ud) element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.


Subject(s)
Aluminum/chemistry , Beta Particles , Radioisotopes/chemistry , Half-Life
14.
Phys Rev Lett ; 103(6): 062501, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19792555

ABSTRACT

Excited states in ;{152}Sm have been investigated with the ;{152}Sm(n,n;{'}gamma) reaction. The lowest four negative-parity band structures have been characterized in detail with respect to their absolute decay properties. Specifically, a new K;{pi} = 0;{-} band has been assigned with its 1;{-} band head at 1681 keV. This newly observed band has a remarkable similarity in its E1 transition rates for decay to the first excited K;{pi} = 0;{+} band at 684 keV to the lowest K;{pi} = 0;{-} band and its decay to the ground-state band. Based on these decay properties, as well as energy considerations, this new band is assigned as a K;{pi} = 0;{-} octupole excitation based on the K;{pi} = 0_{2};{+} state. An emerging pattern of repeating excitations built on the 0_{2};{+} level similar to those built on the ground state may indicate that ;{152}Sm is a complex example of shape coexistence rather than a critical point nucleus.

15.
Phys Rev Lett ; 100(19): 192504, 2008 May 16.
Article in English | MEDLINE | ID: mdl-18518447

ABSTRACT

The branching ratio for the superallowed beta(+) decay of (38)K(m) was measured at TRIUMF's ISAC radioactive ion beam facility. The M3 internal transition between the isomer and the ground state of (38)K(m) was observed with a branching ratio of 330(43) ppm. A search for the nonanalogue beta-decay branch to the first excited 0(+) state in (38)Ar was also performed and yielded an upper limit of < or =12 ppm at 90% C.L. These measurements lead to a revised superallowed branching ratio for (38)K(m) of 99.967(4)%, and increase the (38)K(m) ft value by its entire quoted uncertainty to ft=3052.1(10) s. Implications for tests of the nuclear-structure dependent corrections in superallowed beta decays and the extraction of the Cabibbo-Kobayashi-Maskawa matrix element V(ud) are discussed.

16.
Phys Rev Lett ; 97(10): 102501, 2006 Sep 08.
Article in English | MEDLINE | ID: mdl-17025808

ABSTRACT

A high-precision branching ratio measurement for the superallowed beta+ decay of 62Ga was performed at the Isotope Separator and Accelerator radioactive ion beam facility. Nineteen gamma rays emitted following beta+ decay of 62Ga were identified, establishing the dominant superallowed branching ratio to be (99.861+/-0.011)%. Combined with recent half-life and Q-value measurements, this branching ratio yields a superallowed ft value of 3075.6+/-1.4 s for 62Ga decay. These results demonstrate the feasibility of high-precision superallowed branching ratio measurements in the A>or=62 mass region and provide the first stringent tests of the large isospin-symmetry-breaking effects predicted for these decays.

17.
Phys Rev Lett ; 97(13): 132501, 2006 Sep 29.
Article in English | MEDLINE | ID: mdl-17026028

ABSTRACT

Excited states have been observed in the N=Z-2 odd-odd nucleus 48Mn for the first time. Through comparison with the structure of 48V, a first high-spin study of an odd-odd mirror pair has been achieved. Differences between the T=1 analogue states in this pair have been interpreted in terms of Coulomb effects, with the aid of shell-model calculations in the full pf valence space. Unlike other mirror pairs, the energy differences have been interpreted almost entirely as due to a monopole effect associated with smooth changes in radius (or deformation) as a function of angular momentum. In addition, the large energy shift between analogue negative-parity states is interpreted in terms of the electromagnetic spin-orbit interaction in nuclei.

18.
Phys Rev Lett ; 95(23): 232501, 2005 Dec 02.
Article in English | MEDLINE | ID: mdl-16384300

ABSTRACT

Three rotational bands in 74Kr were studied up to (in one case one transition short of) the maximum spin I(max) of their respective single-particle configurations. Their lifetimes have been determined using the Doppler-shift attenuation method. The deduced transition quadrupole moments reveal a modest decrease, but far from a complete loss of collectivity at the maximum spin I(max). This feature, together with the results of mean field calculations, indicates that the observed bands do not terminate at I = I(max).

19.
Phys Rev Lett ; 87(13): 132501, 2001 Sep 24.
Article in English | MEDLINE | ID: mdl-11580578

ABSTRACT

The ground state rotational bands of the N = Z nuclei (72)Kr, (76)Sr, and (80)Zr have been extended into the angular momentum region where rotation alignment of particles is normally expected. By measuring the moments of inertia of these bands we have observed a consistent increase in the rotational frequency required to start pair breaking, when compared to neighboring nuclei. (72)Kr shows the most marked effect. It has been widely suggested that these "delayed alignments" arise from np-pairing correlations. However, alignment frequencies are very sensitive to shape degrees of freedom and normal pairing, so the new experimental observations are still open to interpretation.

20.
Phys Rev Lett ; 87(13): 132502, 2001 Sep 24.
Article in English | MEDLINE | ID: mdl-11580579

ABSTRACT

The ground state band in (46)Cr and the isospin T = 1 band in (46)V have been delineated up to Ipi = 10(+) (tentatively 12(+)). These observations complete the highest spin T = 1 isospin triplet known. Following the isobaric multiplet mass equation, a combination of level energies in (46)Cr, (46)Ti, and (46)V are taken to highlight the angular momentum dependence of the isovector and isotensor parts of the interaction. The results are compared with full- fp-space shell model calculations. The influence of the one-body and two-body contributions to the isovector energy difference are investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...